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Abstract. Experimental photoelectron spectra are usually interpreted using rather crude
approximations for the upper states into which the electrons are excited. Better knowledge
about these excited states could substantially improve the accuracy of valence band mapping by
photoelectron spectroscopy. We here demonstrate that VLEED measurements are ideally suited
for accurate determination of the desired upper states. This is illustrated by model calculations
including absorption and self-energy corrections. The close correspondence between so-called
irregularity points of the excited-state bands and the total electron reflectivity is established,
which opens up the possibility for direct mapping of irregularity points by comparison with
experimental VLEED spectra, and for fitting of the whole excited-state bands between these
points. The proposed scheme is finally used to determine the excited-state bands of Cu along
0L from measurements on Cu(111).

1. Introduction

The photoemission process inherently employs a lower state (hole), and an upper state
(electron). To obtain the dispersion of the lower bands perpendicular to the surface, one
needs to know the dispersion of the corresponding upper ones. One approach here is
using the upper bands as computed with a ground-state potential (those bands are further
referred to as theground-state bandsε(k)). However, the upper states essentially refer to an
excited state of a solid [1, 2], and may significantly differ from the ground-state bands. An
alternative approach is to neglect the scattering by the crystal potential and use free-electron
bands instead, as the excited-state effects make the upper bands more free-electron-like. In
general, both of these approaches are inadequate when high accuracy is essential.

Neglecting the electron–hole interactions, the upper states may be accurately described
as independent excited-state electrons of finite lifetimeτ , if all electron interactions are
described by introducing an effective complex non-local potential. Due to the finite lifetime
of the excited-state electrons, their energies are blurred. They are described by the spectral
functionA(k, ω), which gives the probability of observing an electron of momentumk and
energyh̄ω. Generally,A(k, ω) is peaked at some energyE; the peak halfwidth is related to
the lifetime as ¯h/τ . The complex self-energy6 combines these quantities:6 = E + i h̄/τ .
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The spectral function description is numerically very involved. An approximation is
made [3, 4] by characterizing the excited-state electrons by wavefunctionsϕ(r, t), which
decay exponentially in time:ϕ(r, t) ∼ ϕ(r) exp[−iEt/h̄] exp[−t/τ ], whereE stands for
Re6, andh̄/τ = Im 6. These wavefunctions should satisfy the time-dependent Schrödinger
equation(Ĥeff −i h̄ ∂/∂t)ϕ(r, t) = 0, whereĤeff includes the effective non-local Hermitian
potentialV eff describing the electron interactions. This equation then reduces to an equation
for the time-independent partϕ(r) only:

(Ĥeff − E + i h̄/τ )ϕ(r) = 0.

Introducing the so-called imaginary (absorption) potentialVi asVi = h̄/τ , we arrive at

(Ĥeff − E + iVi)ϕ(r) = 0.

This looks exactly like a stationary Schrödinger equation, except that the stationary energy
is replaced by the complex energyE − iVi , or the complex conjugate of the self-energy6.

To find the excited states in a crystal, one solves the above equation with a periodic
V eff . Its solutionsϕ(r) are damped Bloch waves, whose wavevectork is complex with
the imaginary part Imk causingϕ(r) to decay. Therefore, an excited state in a crystal is
characterized by a complex self-energy6 depending on a complex wavevectork. Bands
of the real part of6, depending on complexk, are referred to as theexcited-state bands
E(k).

The excited-state bandsE(k) are shifted from the ground-state bandsε(k). The
difference is referred to as the self-energy correction6′(k, ε). One can distinguish two
contributions to the self-energy correction6′(k, ε). The first contribution is due to the
imaginary absorption potentialVi , which acts to smooth the bands near the band gaps.
The second one is due to the significant difference of the excited-stateV eff (depending
on r, E and k), from the ground-state crystal potentialV (r). This contribution produces
systematic energy shifts of the bands. In the following we refer to the bands calculated with
V eff , but without absorptionVi , as no-absorption bands. (In fact, most available so-called
quasiparticle calculations produce essentially the no-absorption bands [5].)

When calculating the excited-state upper bands of photoemission, it is usually not
difficult to assessVi properly. However, theoretically very little is known exactly about the
excited-stateV eff , which has to incorporate all electron interactions, and which produces
significant self-energy corrections. In order to obtain a proper description of the upper
bands, these self-energy corrections have to be determined experimentally.

The most direct experimental probe for bands above the vacuum level is the very-
low-energy electron diffraction (VLEED) technique [6, 7], reviewed in [8]. A particular
advantage of VLEED is that only one electronic state is involved. The relevance of
VLEED to photoemission is established from the one-step photoemission theory [9, 10,
11]. Neglecting the electron–hole interaction, the photocurrentIν(E) from the νth initial
state8ν is given by

Iν(E) ∝ |〈8L∗|A · p|8ν〉|2
whereA is the screened vector potential of the electric field,p is the momentum operator,
and8L is exactly the LEED wavefunction, which would be excited in the crystal by incident
electrons coming from the photoemission detector.

The theoretical foundation for VLEED investigations is the matching approach [12, 13,
14], which links the elastic reflectivityR(E) to the properties of the Bloch waves excited
in a crystal, including their dispersion. However, detailed band mapping from VLEED
data was demonstrated only recently [15, 16, 17], using the no-absorption approximation.
It has been found that an incident beam of energyE and parallel wave-vector component
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K‖ significantly excites only so-calledcoupling bands. These bands are defined as those,
among all bands available for givenE and K‖, having the maximal amplitude of the
Fourier component similar to the incident plane wave (the so-called conducting component).
The behaviour ofR(E) is mainly determined by the features of the coupling bands. In
contrast, bands with negligible amplitude of the conducting component (so-callednon-
coupling bands) are not excited by the incident beam, and do not influenceR(E). In
the vicinity of thecritical points (CPs) (defined as the points where the slope of the bands
dE/dk⊥ undergoes sharp changes, or vanishes at the band-gap edges) of the coupling bands,
the rapid changes in wave-function composition also give rise to rapid changes ofR(E),
through the matching on the surface. Therefore, each CP of the coupling bands produces
an extremum in the derived spectrum dR/dE. By comparing the positions of experimental
and calculated extrema of dR/dE, the empirical positions of relevant CPs were found.
Moreover, whole bands in symmetry planes of the Brillouin zone (BZ) were mapped from
the dispersion of CPs situated there, upon variation ofK‖.

It may seem straightforward to proceed to the excited-state description by replacing the
no-absorption bands by the complex excited-state bands, represented byE(Rek). However,
in contrast to the sharp no-absorption bands, the excited-state bands are rather featureless,
due to the effect of the absorption potentialVi . This has prevented us from establishing
their correlation withR(E).

In this paper we apply model calculations to illustrate that, despite the featureless
appearance of excited-state bands, one can uncover well-defined irregularity points (IPs)
in them, which are linked to the extrema of dR/dE in the same way as the CPs of no-
absorption bands. Consequently, the experimental positions of IPs can be determined from
VLEED data. Moreover, by fitting a reference calculation to the experimental IPs, empirical
excited-state bands are obtained as a whole.

2. Model calculations

Our model calculations consider normal incidence of an electron beam onto the (100) surface
of a hypothetical cubic crystal. The reflectivityR(E) is directly related to the band structure
along0X, through the conservation of parallel momentum (k‖ = 0). The model includes
general band-structure features, and is analogous to normal incidence onto the (111) surface
of any typical fcc metal (like, e.g., Cu, Ni, or Al) [6].

The excited-state effects were described with a local pseudopotentialV ps(r)

approximating the excited-state potentialV eff , and the absorption potential iVi . The excited-
state bands (E as functions of the complexk, with k‖ = 0) were found by solving the secular
equation with respect tok:

det[(|k + G|2 − E + iVi)δG−G′ + V
ps

G−G′ ] = 0

whereV
ps

G−G′ are the pseudopotential matrix elements connecting the symmetrized plane
waves corresponding toG andG′. E stands for Re6, comprising the ground-state energy
and the self-energy corrections. The wave vectors are measured in units of 2|0X|, and the
energies in units of (2|0X|)2. Through the symmetry of the model, the basis set was reduced
to six symmetrized plane waves of11 symmetry, corresponding to the six non-equivalent
lowest-energy bulk reciprocal vectorsG. By virtue of the localV ps , the secular equation
was reduced to an eigenvalue problem, with complexk-values appearing as the eigenvalues
of a complex double-dimensioned matrix, constructed from the Hamiltonian matrix [13, 18].

The reflectivityR(E) was calculated by the matching approach [12, 13, 14], assuming
a step-like surface barrier. The vacuum wavefunction is the sum of the incident plane wave,
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and all diffracted ones, each corresponding to a surface reciprocal vectorg:

8v = exp[iK · r] +
∑

g

Rg exp[−iKg · r].

The wavefunction excited in the crystal is a linear combination of all available decaying
Bloch wavesφn, for givenE andK‖:

8c =
∑

n

Tnφn.

8v and8c were expanded over the symmetrized combinations of the surface-parallel plane
waves exp[i(k‖ + g) · r], corresponding to the two shortest non-equivalentg, and the
unknown amplitudesRg andTn were found by component-by-component matching of8v

and 8c in a plane placed at half an interatomic distance from the topmost atomic layer.
The total reflectivityR(E) was found by summation over all diffracted beams:

R(E) =
∑

g

|Rg|2 ReK
g
⊥/K.

3. Correlation of excited-state bands withR(E)

We have performed model calculations for various pseudopotentialsV ps and absorption
potentialsVi . Figure 1 displays the results, obtained with realistic values ofV

ps

G−G′ (1–
1.5 eV).

Figure 1. Model calculations on a cubic-lattice crystal, corresponding to normal incidence onto
the (100) surface. Left: the no-absorption bands, calculated with vanishingVi . Centre: the
excited-state bands calculated withVi = 0.05, which resembles the absorption for typical fcc
metals; the bands coupling to the incident plane wave are shown by solid lines. Right: the IPs
of excited-state coupling bands visualized as the extremes of a plot of d2 Rek⊥/dE2 (the solid
line), and manifested in electron reflection as the extremes of a plot of dR/dE (the dotted line).
Energy is measured in units of (2|0X|)2; d2 Rek⊥/dE2 and dR/dE are measured in arbitrary
units. The principal pseudopotential Fourier componentsV100, V110, V200, V210 are set to 0.03,
V000 to −0.1, and the rest to zero.
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With negligible absorptionVi (figure 1, left), the no-absorption bands are basically
the ground-state ones (apart from a systematic energetic shift, as we have assumedV ps

corresponding to the excited stateV eff ). However, due to the presence of the surface,
damped Bloch waves with complexk⊥ are allowed [4, 18, 19], in addition to the propagating
ones with realk⊥. This results in the ‘real lines’ linking bands with realk⊥ across their
gaps in plots ofE(Rek⊥).

Among all of the bands available for givenE andK‖, the incident beam predominantly
excites the coupling bands, defined in previous papers as the bands having the maximal
amplitude of the conducting Fourier component, which is associated with the incident plane
wave throughk‖ + G‖ = K‖ [7, 16]. In the light of explicit matching calculations this
definition may be refined as follows: the coupling bands are the bands which, for givenE

andK‖, have the maximal excitation (transmission) amplitude|Tn|, provided that the Bloch
waves are all normalized as∫

φ∗
n(r)φn(r) dr = 1

where the integration is over the crystal half-space. Thereby, the coupling bands are
associated with the maximum of partial probability

|Tn|2
∫

φ∗
n(r)φn(r) dr

of an electron being in the crystal. (This is not equivalent to the maximum of the Bloch
wave amplitude|Tn||φn(r)| on the surface. Physically, our definition accounts for the fact
that a strongly damped Bloch wave contributes less to the total electron transmission.) The
coupling bands are shown in figure 1 as solid lines. Usually they are associated with the
minimal Imk⊥. The other bands shown may be characterized as non-coupling bands if they
are well beyond the regions of hybridization with the coupling bands, because there they
lose the conducting Fourier component, and theirTn vanish. Bands characterized by not
totally symmetric wave functions have been excluded in the calculation. They are classified
as non-coupling bands as well, because their excitation amplitudeTn = 0 due to their lack
of any conducting component.

The critical points (CPs) of bands corresponding to propagating Bloch waves were
previously determined either from sharp variations, or vanishing, of their slope dE/dk⊥.
However, with the damped Bloch waves dE/d Rek⊥ goes to infinity along the vertical
real lines. The bands are therefore more conveniently characterized by their inverse slope
d Rek⊥/dE. Generalizing previous definition, the CPs are redefined as the points with either
sharp variations, or singularities, of the inverse slope d Rek⊥/dE.

By including absorption iVi , one obtains realistic excited-state bands. Figure 1, centre,
shows the bands calculated withVi = 0.05 (for typical fcc metals this value corresponds
to approximately 1.7 eV, which is reasonable up to 30 eV relative toEvac). The coupling
bands are again shown as solid lines. In comparison with the no-absorption bands, the
excited-state bands look rather smooth.

However, one may notice that each CP has become a point with a perceptible irregularity
of the excited-state band, in which the band still distinctly changes its slope d Rek⊥/dE.
To distinguish these points from the sharp no-absorption CPs, we classify these points
as irregularity points (IPs). They are readily revealed as the extremal points of the plot
d2 Rek⊥/dE2 (figure 1, right, full line, displayed for the coupling band only), which may
be interpreted as corresponding to the perpendicular effective massm∗ ∼ d2k⊥/dE2 of the
propagating states. (In the no-absorption limit, d2 Rek⊥/dE2 may exhibit singularities at
CPs.)
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Generally, the wavefunction composition undergoes drastic changes whenever a band
passes through an IP. If an IP belongs to the coupling bands, the matching on the surface
results in a sharp change ofR(E), or an extremum of the curve of dR/dE (figure 1, right,
dotted line). The energy difference between an IP and the corresponding extremum of
dR/dE hardly exceeds 5% of the band width, so as a rule each extremum of dR/dE can
be uniquely assigned to an IP.

Our calculations reveal some further aspects of the relationship between excited-state
bands and electron reflectivity.

(i) The correspondence between IPs and extrema of dR/dE is rather insensitive to the
position and shape of the surface barrier. For example, variation of the matching plane
position by a quarter of the interlayer distance shifted the energetic positions by less than
0.015.

(ii) The non-coupling bands, which are not excited by the incident wave, do not produce
any structure in dR/dE. An example is the ‘invisible’ irregularity at the BZ border near
E = 1.15 (figure 1).

(iii) Often a multitude of bands exist for givenE andK‖, particularly for off-symmetry
incidence. In such cases visual inspection of the bands is not sufficient for identifying the
coupling bands. Instead they can be identified by evaluation of the Bloch-wave excitation
amplitudesTn during a reference calculation with an approximate potential.

(iv) If several IPs are close in energy, as compared to the absorption valueVi , the
corresponding features of dR/dE may overlap. Such overlap may hide the one-to-one
correspondence of IPs and extrema of dR/dE. For example, the two minor irregularities
recognized as a shoulder of d2 Rek⊥/dE2 nearE = 0.8 are hardly distinguished in dR/dE.

(v) The IPs of the coupling bands are linked to the total reflectivityR(E), rather than
to the specular reflectivity. For example, at the two IPs nearE = 1.5 the reflectivity is
redistributed to non-specular beams of the type exp[−i(K + g10) · r], while the specular
reflection vanishes. This fact strongly favours use of the target current spectroscopy (TCS)
experimental technique [16, 20], which measures the total reflectivityR(E) by recording
the current absorbed by the sample.

(vi) When switching on the absorption, CPs of the no-absorption bands generally
transform to become IPs of the excited-state bands, without substantial energy shifts.
Therefore, the extrema of dR/dE may also be thought of as manifesting CPs of no-
absorption bands. This fact justifies the previously applied method of no-absorption band
mapping.

(vii) Also the curves ofE(Im k⊥) are related toR(E), in that any loop-like bump of
E(Im k⊥), related to a coupling band, is associated with a reflectivity peak.

4. Experimental excited-state band mapping by VLEED: mapping of IPs, band
mapping, and band fitting

We have shown that the IPs of the coupling excited-state bands are associated with adjacent
extrema of dR/dE. However, prior to the mapping one has to perform a reference
calculation with an approximate crystal potential in order to establish this association
unambiguously.

Mapping of IPsis particularly simple when they are well separated, so that their one-to-
one correspondence with extrema of dR/dE is upheld. The experimental energy of any IP is
then obtained by correcting its calculated position with the energy shift of the corresponding
experimental extremum of dR/dE relative to its calculated counterpart. When a multitude
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of closely spaced IPs results in overlapping extrema of dR/dE, one can still map the IPs by
iterating the potential parameters of the reference calculation until the calculated extrema of
dR/dE fit their experimental energies. This kind of numerical fitting offers better accuracy
than a simple empirical correction.

Continuous bands in the symmetry planes of the BZ may, in principle, be determined
by a band-mappingprocedure. For example, nearE = 0.15 (figure 1, right) the band
intersection with the BZ border may be located as the half-way point between the corr-
esponding IPs. By mapping these points with respect to incidenceK‖, one obtains the
corresponding band in the BZ symmetry planes. However, these bands are less applicable
in photoemission due to their insignificant coupling at the relevant surface.

To obtain continuous coupling bands for further applications,band fitting to the
experimental IPs is applied. The simplest method is to apply to the reference bands an
energy-dependent shift, which varies linearly between the available energy shifts of the
experimental IPs. Better accuracy is achieved by iterating the potential parameters of a
reference calculation until the calculated extrema of dR/dE fit their experimental energies.
By this procedure, the IPs appear in their experimental positions simultaneously with the
entire coupling bands connecting them. The non-coupling bands are not accurately located
with the above procedure, as they have little influence onR(E). However, these bands are
not of much interest for practical applications.

5. Prospects for photoemission applications

The crucial point for the applications of VLEED in photoemission is that the final state
of photoemission8L∗ is exactly a time-reversed LEED wavefunction. In VLEED, the
coupling bands were defined as those effectively matching the incident plane wave. In the
time-reversed photoemission process, exactly the same coupling bands effectively match the
outgoing plane wave, predominantly contributing to the photocurrent [21]. This means that
the outlined empirical procedure for band fitting by VLEED provides exactly the dominant,
or coupling, upper bands of photoemission.

The bands generated in this way have three attractive advantages for photoemission.
Firstly, they account for the electron scattering by the crystal potential. Secondly, they
account for the smoothing of excited-state bands due to finite lifetime. Thirdly, they include
the experimental points measured by VLEED, to absorb the self-energy corrections due to
the excited-state crystal potentialV eff . Even if the upper bands are close to an empirical
free-electron parabolaE = |k + G|2 + V000, the experimental points provided by VLEED
resolve any ambiguities in the choice of the inner potentialV000.

Applying the above excited-state bands, one should be aware that the energetic positions
of photoemission peaks may be somewhat displaced from the positions dictated byk⊥-
conservation. This may happen if the matrix element of the electric field, or the surface
transmission factor, undergo sharp changes across thek⊥-conserving Lorentzian [9, 22, 23].
This effect is expected to be notable near the IPs.

6. Example: excited-state band fitting for Cu alongΓL

The band fitting discussed above was applied to Cu to generate the excited-state bands along
0L. The experimental VLEED spectra were obtained from the Cu(111) surface using the
TCS technique [15]. The calculations along0L were made by the empirical pseudopotential
method, employing a basis set of 7 symmetrized plane waves. A non-symmetry calculation
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Figure 2. Normal incidence onto the Cu(111) surface. Left: the excited-state bands along0L
generated with the optimized pseudopotential (V200 = 0.4 eV, V220 = −0.7 eV, V222 = −1.6
eV, V000 = −13.4 eV); the coupling bands are shown as solid lines. Right: calculated, and
experimental (the bold line) dR/dE. The energies of their extrema match each other within the
RMS error 0.18 eV.

employed 15 plane waves. The absorption was taken asVi = 0.05(E −EF ), as determined
by photoemission measurements [1]. A step-like surface barrier was placed half an interlayer
distance from the topmost atomic layer.

Figure 2, left, shows the excited-state bands generated with the optimized pseudo-
potential. The coupling bands are fairly well described by three Fourier components
V200, V220, V222, and the inner potentialV000. Despite the substantial absorption (Vi ≈ 1.3
eV) they feature four closely spaced IPs near0. In dR/dE (figure 2, right), these IPs
produce a rather complicated superposition of overlapping features. Fitting the experimental
data there turned out to be an ill-posed problem in the sense that there were a number of
regions inVhkl-space, each producing a calculated spectrum of dR/dE compatible with the
experimental data, but somewhat different bands. However, a constraint|V220+V222| = 1.3
eV was found from the particular band gap atK‖ = 0.5|0X| in the 0̄K̄ azimuth, by fitting
the relevant off-symmetry experimental spectrum [15]. The constraint determined the unique
region inVhkl-space where the fit was further improved by varying the Fourier components
independently. This allowed us to correct for the dependence of the pseudopotential onk.

Near 0, the experimental bands along0L deviate significantly from the free-electron
bands. The difference motivates corrections ofk⊥ by up to 6% of|0L|, which is substantial
enough in accurate photoemission band mapping of the occupied states. While the lower
d bands are too flat near0 to be seriously affected, we expect corrections to the lowest
p-band dispersion of almost 0.25 eV. Reconsidering the available photoemission data [24],
it appears that the correctedk⊥ improves somewhat the agreement with the calculated p
band at higher photon energies, but more accurate photoemission measurements are required
there.
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7. Conclusion

A realistic description of the upper bands of photoemission should involve the excited-state
bands, characterized by a complex self-energy6 depending on a complex wavevectork.
Accurate calculations are not yet feasible, but one can derive them experimentally using
VLEED.

The principles of VLEED band mapping were derived using a model calculation.
Despite being smooth, the excited-state bands are characterized by well-defined irregularity
points (IPs), where the inverse slope of the plots of Re6 (Rek⊥) undergoes sharp variations.
The IPs are closely related to the critical points (CPs) of the no-absorption bands. Each IP
produces an extremum in dR/dE if the corresponding band couples to the incident plane
wave. This allows experimental mapping of IPs by comparison with experimental spectra.
Moreover, the coupling bands as a whole may be determined between the experimental
IPs by a band-fitting procedure, when one fits the experimental position of extrema of
dR/dE by iterating the crystal potential involved in calculations. These bands, which
include the experimental self-energy corrections, are straightforward for use as upper states
in photoemission.

We have performed excited-state band fitting for Cu along the0L line, using exp-
erimental VLEED data for the Cu(111) surface. Near0 the excited-state bands maintained
a significant difference from the free-electron bands. These effects are far more prominent
for non-metals, due to stronger scattering potentials [11, 25].
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